Arithmetic of 0-cycles on varieties defined over number fields
نویسندگان
چکیده
منابع مشابه
Zero-cycles on varieties over finite fields
For any field k, Milnor [Mi] defined a sequence of groups K 0 (k), K M 1 (k), K M 2 (k), . . . which later came to be known as Milnor K-groups. These were studied extensively by Bass and Tate [BT], Suslin [Su], Kato [Ka1], [Ka2] and others. In [Som], Somekawa investigates a generalization of this definition proposed by Kato: given semi-abelian varieties G1, . . . , Gs over a field k, there is a...
متن کاملModular abelian varieties over number fields
The main result of this paper is a characterization of the abelian varieties B/K defined over Galois number fields with the property that the zeta function L(B/K; s) is equivalent to the product of zeta functions of non-CM newforms for congruence subgroups Γ1(N). The characterization involves the structure of End(B), isogenies between the Galois conjugates of B, and a Galois cohomology class at...
متن کاملCycles in the De Rham Cohomology of Abelian Varieties over Number Fields
In his 1982 paper, Ogus defined a class of cycles in the de Rham cohomology of smooth proper varieties over number fields. This notion is a crystalline analogue of `-adic Tate cycles. In the case of abelian varieties, this class includes all the Hodge cycles by the work of Deligne, Ogus, and Blasius. Ogus predicted that such cycles coincide with Hodge cycles for abelian varieties. In this paper...
متن کاملSieve methods for varieties over finite fields and arithmetic schemes
Classical sieve methods of analytic number theory have recently been adapted to a geometric setting. In the new setting, the primes are replaced by the closed points of a variety over a finite field or more generally of a scheme of finite type over Z. We will present the method and some of the surprising results that have been proved using it. For instance, the probability that a plane curve ov...
متن کاملGalois sections for abelian varieties over number fields
For an abelian variety A over a number field k we discuss the space of sections of its fundamental group extension π1(A/k). By analyzing the maximal divisible subgroup of the Weil–Châtelet group H(k,A) we show that the space of sections of π1(A/k) contains a copy of Ẑ[k:Q]·dim(A) and is never in bijection with A(k). This is essentially a result about the structure of H(k,T`(A)). 1. Galois secti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales scientifiques de l'École normale supérieure
سال: 2013
ISSN: 0012-9593,1873-2151
DOI: 10.24033/asens.2184